The National University of Lesotho

B.Sc. Examination

PG 2401 : Principles of Hydrology

Jan, 2024

Marks: 100

3 Hours

Instructions:

- Answer any **four (4)** questions.
- Where applicable illustrate your answer with equations and diagrams
- Each question carries 25 marks.

Question 1

With the help of appropriate diagrams explain what you understand by the following terms:

- (a) Sublimation
- (b) Surface runoff
- (c) Steady flow
- (d) Recharge area
- (e) Confined aquifer

(5 each) [25]

Question 2

- (a) About 97% of the world's water is stored in oceans. Describe the natural physical processes involved in the translation of the oceanic water to an upland stream. (13)
- (b) A hydrologist is required to assess the quantity of water available in a particular catchment in the in the lowlands of Lesotho.
 - (i) What phases of the hydrological cycle would he/she have to consider and why? (7)
 - (ii) What measurements would you recommend him/her to make? (5)

Question 3

(a) Explain the importance of solar radiation in driving the hydrological processes (8)

[25]

(b) Sketch a diagram of the hydrological cycle showing all the processes that can take place. Also write short notes explaining the conditions under which each process takes place. (17)

[25]

Question 4

- (a) Explain the following terms as used in the study of evaporation
 - i. Open water evaporation (3)
 - ii. Actual evapotranspiration (3)
 - iii. Potential evapotranspiration (3)
- (b) A practical realisation of the vapour flow equation $(E_o = f(u)(e_s e_d))$ for open water evaporation incorporates the area of the lake/reservoir as follows;

 $E_0 = 0.291 A^{-0.05} U(e_s - e_d)$ Where E_o is in $mm \, day^{-1}$, A is in m^2 , U is in $m \, s^{-1}$ and e_s and e_d are in mb.

Calculate the volume of water lost from a lake of surface area 10.86 km^2 over the summer months (October-March), given that the mean wind speed is $4.64ms^{-1}$ and the values of e_s and e_d are 15.3 and 11.2 mb, respectively. (16)

[25]

Question 5

In a given year, a watershed/catchment with an area of 50 km^2 receives a total precipitation of 1800 mm. A dam build at the outlet of the watershed supplies $6.7x10^7 m^3$ of water to the nearby village during this period while an average discharge of $0.1 m^3 s^{-1}$ is maintained downstream of the dam.

- (a) Assuming the watershed to be water-tight, estimate the average daily evapotranspiration from the watershed. (15)
- (b) What is the importance of the assumption made in (a)? (3)
- (c) Would the amount of evaporation be different if the watershed was not water-tight? Explain. (7)

Question 6

(a) Briefly describe how to carry a discharge measurement using a current meter. Itemise the instruments required and the necessary precautions you would take to ensure accuracy.

(10)

[25]

(c) Current meter measurements were taken at a cross-section in a river as shown in table 6.1 below. Expand the table and calculate the discharge using the <u>mean-section method</u>.

Table 6.1

Distance (m)	Depth (m)	Velocity (<i>ms</i> ⁻¹)
5	0	0
10	1.8	0.1
20	3.7	0.2
30	9.0	0.6
35	12.6	1.1
40	10.1	0.8
45	5.3	0.5
47	0	0

(15) **[25]**